
Introduction to Node.js on
IBM i:
What, Why, and How?

Mark Irish
mirish@ibm.com
Software Developer
IBM

November 1st, 2019
COMMON Norge

© 2019 IBM Corporation

Outline

• Introduction
• What is Node.js?

 JavaScript Runtime
 Node.js APIs
 Event Loop
 npm: The Node Package Manager

• Why should I use Node.js
 Too many reasons to list!

• How do I use Node.js?
 Installing Node.js on IBM i
 Writing your first program

• Conclusion

© 2019 IBM Corporation

What? Why? How?

© 2019 IBM Corporation

Node.js: A JavaScript Runtime Environment

• Node.js is an environment that runs JavaScript code outside of a browser

• Node.js uses Google’s V8 Engine, written in C++, to quickly interpret and
execute code

• Released in 2009, Node.js is a stable, mature environment for developing
applications

© 2019 IBM Corporation

A JavaScript* Refresher

• JavaScript is a high-level, interpreted, weakly-typed language

• JavaScript was written in the mid 90s for scripting in web-browsers

• In Node.js, JavaScript is used for server-side scripting (think PHP)

* This has nothing to do with Java!

© 2019 IBM Corporation

JavaScript Front-End AND Back-End?

“Any application that can be written in JavaScript, will eventually be written in
JavaScript.”

- Jeff Atwood: Author, Entrepreneur, Co-founder of StackOverflow

© 2019 IBM Corporation

JavaScript Front-End AND Back-End?

Browser (front-end):

• JavaScript to access DOM elements such as window and document

• Allows manipulation of data in a web browser, like changing HTML or element
styles

Node.js (back-end):

• JavaScript to access Node.js APIs such as fs, child_process, and https

• Interacts with the Node.js runtime, which can access your system (files,
threads, the internet, your network, etc.)

© 2019 IBM Corporation

Node.js APIs

Node.js exposes a number of APIs that allow you to interact with your machine.

APIs exist for:
 Access the file system
 Throwing and handling errors
 Getting information from the operating system

 Sending/receiving HTTP and HTTPS requests
 Spawning child processes
 And more!

© 2019 IBM Corporation

API Example

File System (fs)
 “The fs module provides an API for interacting with the file system in a

manner closely modeled around standard POSIX functions”

Example:

fs.readFile(path[, options], callback)

fs.mkdir(path[, options], callback)

If you download a package like PDFKit, you call its functions, which in turn call
the fs API.

© 2019 IBM Corporation

More Than Just JavaScript!

N-API (Node API) allows you to write C programs for Node.js

• Maintained as an official part of Node.js

• Engine agnostic, so it can run on V8 or any future engine

• ABI (Application Binary Interface) stable, so it doesn’t need to be recompiled
on newer version of Node.js

• node-addon-api is a C++ wrapper for N-API

© 2019 IBM Corporation

Node.js Event Loop

Very important information! You can shoot yourself in the foot if you don’t
understand how Node.js executes code!

Node.js is single-threaded!

• Both user space (your code) and the internal code run on the same thread

• To avoid lockup, you need to use asynchronous code (callback functions
and/or promises) to break up your code

• A simplified view of the event loop might look like...

© 2019 IBM Corporation

Node.js Event Loop

© 2019 IBM Corporation

Prevent Blocking the Event Loop

Using callback functions…

fs.readFile('/etc/passwd', (err, data) => {
 if (err) throw err;
 console.log(data);
});

/*
The (err, data) => { … } is the callback function. When readFile is done running
internally (where it sends I/O work to a libuv thread), it will call the
function, and the code between the { … } will be executed. In the meantime, it
won’t be blocking the event loop.
*/

© 2019 IBM Corporation

Prevent Blocking the Event Loop

(callback hell)

© 2019 IBM Corporation

Prevent Blocking the Event Loop

...or Promises.

const contents = await fsPromises.readFile('/etc/passwd');
console.log(contents);

/*
FsPromises.readFile returns a Promise. By using the ‘await’ keyword, Node.js
knows to do other things on the event loop until the Promise resolves, then puts
the execution of more code on a the queue.
*/

© 2019 IBM Corporation

Prevent Blocking the Event Loop

Don’t do long-running functions without breaking them up!

for (let i = 0; i < Integer.MAX_SAFE_INTEGER; i++) {
// this will stop all other execution
console.log(`i is ${i}`);

}

/* The above code will block the entire Node.js process until the loop finishes
running! Break up loops like above into smaller chunks, otherwise it will block
everything.
*/

© 2019 IBM Corporation

Node.js Event Loop

In reality, most Node.js I/O is built to be non-blocking by default

If your program starts to have poor performance, look for places where there are
long-running functions

© 2019 IBM Corporation

npm (Node.js Package Manager)

npm is a public repository with over one-million open-source Node.js packages

You can download frameworks, libraries, even single functions that will greatly
reduce development time

npm is the most powerful aspect of Node.js

© 2019 IBM Corporation

npm Orgs and npm Enterprise

Private repositories to store your business’s proprietary packages

Modularize your Node.js application, publish modules privately, and import them
only as needed

All the power of npm to download packages, but with privacy and security for
your business

© 2019 IBM Corporation

package.json

Holds the metadata for your application

• application name

• license

• dependencies to download from npm

Copy your package.json and source code to a new location, then reinstall
dependencies from the internet

I’ll teach you more in the How? section

© 2019 IBM Corporation

Node.js sounds huge!

Some fun numbers:

• 20 MB: The size of the IBM i RPM

• 18 MB: The entire size of Node.js

• 60 ms: The time it takes to start Node.js

Node.js is small and fast, meaning low overhead for your applications

© 2019 IBM Corporation

What? Why? How?

© 2019 IBM Corporation

JavaScript Makes Programming Easy

JavaScript is an incredibly easy language to learn

• Weakly-typed

• Interpreted (no precompilation needed, all JIT)

• Fewer “gotchas” compared to other languages

Less time spent reading documentation, more time spent developing!

© 2019 IBM Corporation

Easy(ier) to find JavaScript Talent

Developers have been using JavaScript for almost 25 years

Developers have been doing Node.js for almost 10 years

StackOverflow 2019 Survey

Almost 70% use JavaScript

© 2019 IBM Corporation

Node.js is Versatile

Node.js is a JavaScript runtime that has no opinions on what it can be used for

• Serving web applications

• Create REST APIs

• Scraping websites

• Creating or editing files

• Watson API

• Running cron jobs

• Communicating with Db2

• And more!

© 2019 IBM Corporation

npm Supercharges Development

Packages exist for nearly every task

Do you want to create…

...a web application?

• Express, Koa, hapi, Strapi, Sails, Restify

...a web scraper?

• Request + Zombie + Crawler

...an IoT dashboard?

• Node-red, tuyapi

• (These are just examples, no endorsement intended)

© 2019 IBM Corporation

More Tools Than You Can Use

npm is the largest software repository in the world

• Over one-million open-source packages available for you to use

• Many packages have been used and tested for years
 Low-risk for vulnerabilities
 Hundreds of tutorials for developers to follow

© 2019 IBM Corporation

Packages Reduce Development Time

When developers don’t have to reinvent the wheel, they can…

• Focus on writing application logic for your business’s needs

• Get support from others who use the same package

• Be more certain that components are secure

© 2019 IBM Corporation

Stable Release Schedule

© 2019 IBM Corporation

Performance Comparisons with Java

Node.js can handle large volumes of data throughput

Comparison between scaling in Node.js and Java:

© 2019 IBM Corporation

Performance Comparisons with Java

 Higher performance for I/O
 Easier asynchronous programming
 Fullstack/isomorphic development

 Higher processing performance
 Type safety for calculations
 Rich processing frameworks

© 2019 IBM Corporation

Supported by Large Organizations

“When an organization becomes a member of the OpenJS Foundation, they are making a tangible
commitment to the ongoing success and sustainability of many critical projects in the JavaScript
ecosystem.” https://openjsf.org/members/

https://openjsf.org/members/

© 2019 IBM Corporation

...Including IBM

IBM’s strategy
 Keep Node.js viable for enterprise applications
 Ensure the level of security, performance, and support reaches or exceeds that

of other traditional enterprise technologies

© 2019 IBM Corporation

IBM Node.js Community Leadership

Participation in Technical Steering Committee

Michael
Dawson

© 2019 IBM Corporation

IBM Node.js Community Leadership

9 Core Collaborators

Michael
Dawson

Ben
Noordhuis

Sam
Roberts

Gireesh
Punathil

Bethany
Griggs

Yi-Hong
Wang

Steven
Loomis

Richard
Lau

Ryan
Graham

© 2019 IBM Corporation

Node.js and Package Support Through IBM

 Git
 Jenkins
 rsync
 Node.js
 Apache Tomcat

 Wordpress
 Python

http://ibmsystemsmag.com/blogs/open-your-i/december-2018/a-game-changer-
for-open-source-support/

http://ibmsystemsmag.com/blogs/open-your-i/december-2018/a-game-changer-for-open-source-support/
http://ibmsystemsmag.com/blogs/open-your-i/december-2018/a-game-changer-for-open-source-support/

© 2019 IBM Corporation

Proven Results

Node.js has a proven track record of delivering more value in less time

Node.js is a go-to technology for many Fortune 500 companies and
governmental agencies

Don’t just take my word for it...

© 2019 IBM Corporation

PayPal Success Story

Parallel development of Account page in both Java and Node.js

Node.js version was built:

• Twice as fast

• Had 33% fewer lines of code

• 40% fewer files

• With a smaller team

Node.js could handle double the requests-per-second, with 35% reduction in
average response time

PayPal transitioned all development to Node.js

© 2019 IBM Corporation

Walmart Success Story

Walmart saw the potential for Node.js so developed Hapi.js, an open-source web
framework

In 2013, Hapi.js was used for the walmart.com mobile website during Black
Friday...

© 2019 IBM Corporation

Many Success Stories

© 2019 IBM Corporation

IBM i and Node.js

We don’t want you to rewrite all of your C, C++, RPG, COBOL, or CL code in
JavaScript

Instead, you should use Node.js enhance and extend your applications

Many ways to connect to your IBM i:
• itoolkit

All in one solution for calling PGMs, CL commands, interact with LIBs, call
Db2, and more!

• idb-pconnector
Connecting to Db2 from on your IBM i system using CLI

• odbc
Connecting to Db2 from IBM i, Windows, or Linux using ODBC

© 2019 IBM Corporation

Summary

 JavaScript makes development fast and easy by its interpreted, weakly-typed nature

 Massive pool of talent makes it easy to find Node.js developers

 Great performance and scalability compared to other technologies like Java, Ruby on Rails, or PHP

 Mature technology that has been available for nearly a decade means no surprises

 Over one million packages on npm is evidence of a robust ecosystem, wherein you can find the right
tools for any job (or make your own)

 Support from large corporations who have a vested interest keeping Node.js relevant and modern

 Proven value through many case-studies at large corporations

 Tools to integrate Node.js directly with your existing IBM i business applications

 Developer satisfaction with Node.js is much higher than other technologies. Programming with Node.js
is (more) fun!

© 2019 IBM Corporation

What? Why? How?

© 2019 IBM Corporation

Installing the Open-Source Environment

A little outside the scope of this presentation, but…

Node.js is delivered by the IBM i OSS team through the yum package manager
(no more PTFs!)

• To get the open-source environment, visit http://ibm.biz/ibmi-rpms

http://ibm.biz/ibmi-rpms

© 2019 IBM Corporation

Installing Node.js

On your Windows or Mac machine, you can download the installation package at
https://nodejs.org/en/download

On your Linux (or IBM i) machine, you should use your package manager

IBM i:

yum install nodejs12

This will install node and npm

• node will be used to run our appliaction

• npm is used to download packages and keep track of metadata

https://nodejs.org/en/download

© 2019 IBM Corporation

npm init and package.json

Create a directory for your application and use npm init to create a
package.json file, which holds application metadata

$ mkdir norge-app
$ cd norge-app
$ npm init
Press ^C at any time to quit.
package name: (norge-app)
version: (1.0.0)
description: Our example app
entry point: (index.js)
test command:
git repository:
keywords:
author: Mark Irish
license: (ISC)
…
Is this OK? (yes)

{
 "name": "norge-app",
 "version": "1.0.0",
 "description": "Our example app",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit
1"
 },
 "author": "Mark Irish",
 "license": "ISC"
}

norge-app/package.json

© 2019 IBM Corporation

package.json

package.json is confusing at first, but its actually really simple

Your application can be recreated with just package.json and the source code

When you download dependencies through npm, you also include your
dependencies’ dependencies (and so on).

• These are all placed in a directory called node-modules

• This directory can be magnitudes larger than your source code

You don’t need to transfer or track node_modules, as npm will read
package.json and install all the required files from npm when you run

$ npm install

© 2019 IBM Corporation

Let’s See It In Action

$ cat package.json
{
 "name": "bookstore",
 "version": "1.0.0",
 "description": "Restful API with authentication
using passport.js",
 "main": "app.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit
1"
 },
 "author": "",
 "license": "MIT",
 "dependencies": {
 "body-parser": "^1.18.3",
 "connect-flash": "^0.1.1",
 "ejs": "^2.6.1",
 "express": "^4.16.3",
 "express-session": "^1.15.6",
 "idb-pconnector": "^0.1.1",
 "itoolkit": "^0.1.3",
 "passport": "^0.4.0",
 "passport-local": "^1.0.0"
 }
}

Express.js example (express_books)

Without dependencies downloaded,
size of express_books directory is 340
kB. That is source, package.json, and
other smaller files.

package.json lists 9 dependencies

© 2019 IBM Corporation

Downloading Dependencies

269 packages? But we only had 9 as
dependencies!

Remember, your dependencies have
dependencies

express_books directory now has
18324 kB, 53x larger than before

All dependencies are in node_modules
directory, where Node.js will look for
them

$ npm install
added 132 packages from 96 contributors and audited
269 packages in 27.359s
found 0 vulnerabilities
$ du -k
...
17948 ./node_modules
18324 .

© 2019 IBM Corporation

A Simple Application

You have all the tools you need to create a Node.js application

Let’s make a Hello World Express.js web application

(Example is not IBM i specific so that you can run it directly on your machines
today)

© 2019 IBM Corporation

Set Up Application Directory

1. Create a directory called norge-app

$ mkdir norge-app

2. Navigate to that directory and run

$ npm init -y

3. Install Express.js (a popular web framework for Node.js)

$ npm install express

© 2019 IBM Corporation

Using Downloaded Packages

In JavaScript files, you use the require module

const express = require(‘express’);

require will resolve the package name you pass in, and give you that
package’s main exported object

You can also ‘require’ an absolute path if you want to import objects that
aren’t in your node_modules folder

© 2019 IBM Corporation

Creating a JavaScript File

Create a file called app.js with the following code:

const express = require('express');
const app = express();
const port = 3000;

app.get('/', (req, res) => res.send('Hello World!'));

app.listen(port, () => console.log(`App running`));

© 2019 IBM Corporation

Run Your Program

From the norge-app directory, run

$ node app.js

Your terminal should display ‘App running’. Your application will run until you
kill it (CTRL + c)

Go to your browser and type ‘localhost:3000’ in the address bar

© 2019 IBM Corporation

Your First Application

Underwhelmed?
 Web server with 5 lines of code (plus the use of Express.js)
 Took about 20 seconds to make
 Runs faster than PHP or Java serving the same page

You used your knowledge!

 $ npm init
 $ npm install express
 require(‘express’)
 node app.js

© 2019 IBM Corporation

Best Way to Learn is to Fail

Node.js is simple, but like everything it can seem confusing at first

If you want to learn to use Node.js…

...you should start to use Node.js

You will make mistakes, but you will quickly see why Node.js is so popular

© 2019 IBM Corporation

The End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

